Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 33(6): 2470-2484, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35650684

RESUMO

The endocannabinoid (eCB) system represents a promising neurobiological target for novel anxiolytic pharmacotherapies. Previous clinical and preclinical evidence has revealed that genetic and/or pharmacological manipulations altering eCB signaling modulate fear and anxiety behaviors. Water-insoluble eCB lipid anandamide requires chaperone proteins for its intracellular transport to degradation, a process that requires fatty acid-binding proteins (FABPs). Here, we investigated the effects of a novel FABP-5 inhibitor, SBFI-103, on fear and anxiety-related behaviors using rats. Acute intra-prelimbic cortex administration of SBFI-103 induced a dose-dependent anxiolytic response and reduced contextual fear expression. Surprisingly, both effects were reversed when a cannabinoid-2 receptor (CB2R) antagonist, AM630, was co-infused with SBFI-103. Co-infusion of the cannabinoid-1 receptor antagonist Rimonabant with SBFI-103 reversed the contextual fear response yet showed no reversal effect on anxiety. Furthermore, in vivo neuronal recordings revealed that intra-prelimbic region SBFI-103 infusion altered the activity of putative pyramidal neurons in the basolateral amygdala and ventral hippocampus, as well as oscillatory patterns within these regions in a CB2R-dependent fashion. Our findings identify a promising role for FABP5 inhibition as a potential target for anxiolytic pharmacotherapy. Furthermore, we identify a novel, CB2R-dependent FABP-5 signaling pathway in the PFC capable of strongly modulating anxiety-related behaviors and anxiety-related neuronal transmission patterns.


Assuntos
Ansiolíticos , Ansiedade , Proteínas de Ligação a Ácido Graxo , Córtex Pré-Frontal , Receptor CB2 de Canabinoide , Animais , Ratos , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Ansiolíticos/metabolismo , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Canabinoides/metabolismo , Endocanabinoides/metabolismo , Proteínas de Ligação a Ácido Graxo/antagonistas & inibidores , Proteínas de Ligação a Ácido Graxo/metabolismo , Medo/efeitos dos fármacos , Medo/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/metabolismo
2.
Psychopharmacology (Berl) ; 239(1): 253-266, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34982171

RESUMO

RATIONALE: The voltage-insensitive, small-conductance calcium-activated potassium (SK) channel is a key regulator of neuronal depolarization and is implicated in the pathophysiology of depressive disorders. OBJECTIVE: We ascertained whether the SK channel is impaired in the chronic unpredictable stress (CUS) model and whether it can serve as a molecular target of antidepressant action. METHODS: We assessed the depressive-like behavioral phenotype of CUS-exposed rats and performed post-mortem SK channel binding and activity-dependent zif268 mRNA analyses on their brains. To begin an assessment of SK channel subtypes involved, we examined the effects of genetic and pharmacological inhibition of the SK3 channel using conditional knockout mice and selective SK3 channel negative allosteric modulators (NAMs). RESULTS: We found that [125I]apamin binding to SK channels is increased in the prefrontal cortex and decreased in the hippocampus, an effect that was associated with reciprocal levels of zif268 mRNA transcripts indicating abnormal regional cell activity in this model. We found that genetic and pharmacological manipulations significantly decreased immobility in the forced swim test without altering general locomotor activity, a hallmark of antidepressant-like activity. CONCLUSIONS: Taken together, these findings link depression-related neural and behavioral pathophysiology with abnormal SK channel functioning and suggest that this can be reversed by the selective inhibition of SK3 channels.


Assuntos
Neurônios , Canais de Potássio Ativados por Cálcio de Condutância Baixa , Animais , Antidepressivos/farmacologia , Apamina , Cálcio/metabolismo , Camundongos , Neurônios/metabolismo , Ratos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética
3.
Front Psychiatry ; 11: 624275, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519564

RESUMO

Clinical reports of cannabis use prevalence during pregnancy vary widely from 3% to upwards of 35% in North America; this disparity likely owing to underestimates from self-reporting in many cases. The rise in cannabis use is mirrored by increasing global legalization and the overall perceptions of safety, even during pregnancy. These trends are further compounded by a lack of evidence-based policy and guidelines for prenatal cannabis use, which has led to inconsistent messaging by healthcare providers and medically licensed cannabis dispensaries regarding prenatal cannabis use for treatment of symptoms, such as nausea. Additionally, the use of cannabis to self-medicate depression and anxiety during pregnancy is a growing medical concern. This review aims to summarize recent findings of clinical and preclinical data on neonatal outcomes, as well as long-term physiological and neurodevelopmental outcomes of prenatal cannabis exposure. Although many of the outcomes under investigation have produced mixed results, we consider these data in light of the unique challenges facing cannabis research. In particular, the limited longitudinal clinical studies available have not previously accounted for the exponential increase in (-)-Δ9- tetrahydrocannabinol (Δ9-THC; the psychoactive compound in cannabis) concentrations found in cannabis over the past two decades. Polydrug use and the long-term effects of individual cannabis constituents [Δ9-THC vs. cannabidiol (CBD)] are also understudied, along with sex-dependent outcomes. Despite these limitations, prenatal cannabis exposure has been linked to low birth weight, and emerging evidence suggests that prenatal exposure to Δ9-THC, which crosses the placenta and impacts placental development, may have wide-ranging physiological and neurodevelopmental consequences. The long-term effects of these changes require more rigorous investigation, though early reports suggest Δ9-THC increases the risk of cognitive impairment and neuropsychiatric disease, including psychosis, depression, anxiety, and sleep disorders. In light of the current trends in the perception and use of cannabis during pregnancy, we emphasize the social and medical imperative for more rigorous investigation of the long-term effects of prenatal cannabis exposure.

4.
Psychopharmacology (Berl) ; 236(12): 3541-3556, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31302721

RESUMO

RATIONALE: Ethanol-induced behavioural sensitization (EBS) does not occur uniformly in mice exposed to the sensitization paradigm. This suggests innate differential responses to ethanol (EtOH) in the reward circuitry of individual animals. OBJECTIVES: To better characterize the adaptive differences between low-sensitized (LS) and high-sensitized (HS) mice, we examined excitatory amino acid (EAA) and inhibitory amino acid (IAA) neurotransmitter levels in the nucleus accumbens (NAc) during EBS expression. METHODS: Male DBA/2J mice received five ethanol (EtOH) (2.2 g/kg) or saline injections, and locomotor activity (LMA) was assessed during EBS induction. EtOH mice were classified as LS or HS on the basis of final LMA scores. Following an EtOH challenge (1.8 g/kg) 2 weeks later, LMA was re-evaluated and in vivo microdialysis samples were collected from the NAc. RESULTS: Most differences in amino acid levels were observed within the first 20 min after EtOH challenge. LS mice exhibited similar glutamate levels compared with acutely treated (previously EtOH naïve) mice, and generally increased levels of the IAAs GABA, glycine, and taurine. By contrast, HS mice exhibited increased glutamate and attenuated levels of GABA, glycine, and taurine. CONCLUSION: These data suggest that the profile of amino acid neurotransmitters in the NAc of LS and HS mice significantly differs. Elucidating these adaptive differences contributes to our understanding of factors that confer susceptibility/resilience to alcohol use disorder.


Assuntos
Etanol/administração & dosagem , Rede Nervosa/metabolismo , Neurotransmissores/metabolismo , Núcleo Accumbens/metabolismo , Sinapses/metabolismo , Aminoácidos/metabolismo , Animais , Aminoácidos Excitatórios/metabolismo , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Microdiálise/métodos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Rede Nervosa/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Sinapses/efeitos dos fármacos
5.
Mol Pain ; 15: 1744806918822185, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30799686

RESUMO

Cancers in the bone produce a number of severe symptoms including pain that compromises patient functional status, quality of life, and survival. The source of this pain is multifaceted and includes factors secreted from tumor cells. Malignant cells release the neurotransmitter and cell-signaling molecule glutamate via the oxidative stress-related cystine/glutamate antiporter, system xC-, which reciprocally imports cystine for synthesis of glutathione and the cystine/cysteine redox cycle. Pharmacological inhibition of system xC- has shown success in reducing and delaying the onset of cancer pain-related behavior in mouse models. This investigation describes the development of a stable siRNA-induced knockdown of the functional trans-membrane system xC- subunit xCT ( SLC7A11) in the human breast cancer cell line MDA-MB-231. Clones were verified for xCT knockdown at the transcript, protein, and functional levels. RNAseq was performed on a representative clone to comprehensively examine the transcriptional cellular signature in response to xCT knockdown, identifying multiple differentially regulated factors relevant to cancer pain including nerve growth factor, interleukin-1, and colony-stimulating factor-1. Mice were inoculated intrafemorally and recordings of pain-related behaviors including weight bearing, mechanical withdrawal, and limb use were performed. Animals implanted with xCT knockdown cancer cells displayed a delay until the onset of nociceptive behaviors relative to control cells. These results add to the body of evidence suggesting that a reduction in glutamate release from cancers in bone by inhibition of the system xC- transporter may decrease the severe and intractable pain associated with bone metastases.


Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Neoplasias da Mama/complicações , Dor do Câncer/etiologia , Dor do Câncer/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Isótopos de Carbono/farmacocinética , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Linhagem Celular Tumoral , Cistina/farmacocinética , Modelos Animais de Doenças , Feminino , Ácido Glutâmico/metabolismo , Glutationa/metabolismo , Humanos , Interleucina-1/metabolismo , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
6.
Neuropsychopharmacology ; 43(5): 1099-1106, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28862251

RESUMO

Deep brain stimulation (DBS) is being investigated for a number of psychiatric indications, including posttraumatic stress disorder (PTSD). Preclinical studies continue to be a cornerstone for the development of new DBS applications. We investigate whether DBS delivered to the infralimbic cortex (IL), a region involved in mechanisms of stress resiliency, may counter behavioral abnormalities in rats that present persistent extinction deficits and long-term anxiety after exposure to fear conditioning. Rats undergoing fear conditioning/extinction were segregated into weak and strong extinction groups (WE >70% or SE <30% of freezing during extinction). Following 2 weeks of DBS, animals were exposed to novel recall sessions and tested in the open field, novelty-suppressed feeding, and elevated plus maze. zif268 expression was measured in structures involved in mechanisms of fear and stress. In vivo electrophysiology was used to record activity from the basolateral amygdala (BLA). We found that DBS improved extinction deficits and anxiety-like behavior in WE animals, having no significant effects in SE rats. No major differences in absolute zif268 levels were recorded across groups. However, correlation between zif268 expression in the IL and BLA was disrupted in WE animals, a deficit that was countered by DBS treatment. Electrophysiology experiments have shown that DBS reduced BLA firing of both putative principal cells and interneurons in WE rats, with no significant differences being detected between SE and SE DBS animals. In summary, IL DBS mitigated fear, partially improved anxiety-like behavior, reversed neurocircuitry abnormalities, and reduced BLA cell firing in a preclinical model of PTSD.


Assuntos
Ansiedade/fisiopatologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Estimulação Encefálica Profunda , Medo/fisiologia , Córtex Pré-Frontal/fisiologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Comportamento Animal/fisiologia , Condicionamento Psicológico/fisiologia , Proteína 1 de Resposta de Crescimento Precoce/biossíntese , Extinção Psicológica/fisiologia , Resposta de Imobilidade Tônica/fisiologia , Masculino , Córtex Pré-Frontal/metabolismo , Ratos
7.
Nucl Med Biol ; 53: 14-20, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28719807

RESUMO

INTRODUCTION: Few, if any, radiotracers are available for the in vivo imaging of reactive oxygen species (ROS) in the central nervous system. ROS play a critical role in normal cell processes such as signaling and homeostasis but overproduction of ROS is implicated in several disorders. We describe here the radiosynthesis and initial ex vivo and in vivo evaluation of [11C]hydromethidine ([11C]HM) as a radiotracer to image ROS using positron emission tomography (PET). METHODS: [11C]HM and its deuterated isotopologue [11C](4) were produced using [11C]methyl triflate in a one-pot, two-step reaction and purified by high performance liquid chromatography. Ex vivo biodistribution studies were performed after tail vein injections of both radiotracers. To demonstrate sensitivity of uptake to ROS, [11C]HM was administered to rats treated systemically with lipopolysaccharide (LPS). In addition, ex vivo autoradiography and in vivo PET imaging were performed using [11C]HM on rats which had been microinjected with sodium nitroprusside (SNP) to induce ROS. RESULTS: [11C]HM and [11C](4) radiosyntheses were reliable and produced the radiotracers at high specific activities and radiochemical purities. Both radiotracers demonstrated good brain uptake and fast washout of radioactivity, but [11C](4) washout was faster. Pretreatment with LPS resulted in a significant increase in brain retention of radioactivity. Ex vivo autoradiography and PET imaging of rats unilaterally treated with microinjections of SNP demonstrated increased retention of radioactivity in the treated side of the brain. CONCLUSIONS: [11C]HM has the attributes of a radiotracer for PET imaging of ROS in the brain including good brain penetration and increased retention of radioactivity in animal models of oxidative stress.


Assuntos
Encéfalo/diagnóstico por imagem , Fenantridinas , Tomografia por Emissão de Pósitrons/métodos , Espécies Reativas de Oxigênio/metabolismo , Animais , Transporte Biológico , Encéfalo/metabolismo , Radioisótopos de Carbono , Fenantridinas/metabolismo , Fenantridinas/farmacocinética , Traçadores Radioativos , Ratos , Distribuição Tecidual
8.
Sci Rep ; 7: 41382, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28120908

RESUMO

Despite the lack of robust evidence of effectiveness, current treatment options for cancer-induced depression (CID) are limited to those developed for non-cancer related depression. Here, anhedonia-like and coping behaviours were assessed in female BALB/c mice inoculated with 4T1 mammary carcinoma cells. The behavioural effects of orally administered sulfasalazine (SSZ), a system xc- inhibitor, were compared with fluoxetine (FLX). FLX and SSZ prevented the development of anhedonia-like behaviour on the sucrose preference test (SPT) and passive coping behaviour on the forced swim test (FST). The SSZ metabolites 5-aminosalicylic acid (5-ASA) and sulfapyridine (SP) exerted an effect on the SPT but not on the FST. Although 5-ASA is a known anti-inflammatory agent, neither treatment with SSZ nor 5-ASA/SP prevented tumour-induced increases in serum levels of interleukin-1ß (IL-1ß) and IL-6, which are indicated in depressive disorders. Thus, the observed antidepressant-like effect of SSZ may primarily be attributable to the intact form of the drug, which inhibits system xc-. This study represents the first attempt at targeting cancer cells as a therapeutic strategy for CID, rather than targeting downstream effects of tumour burden on the central nervous system. In doing so, we have also begun to characterize the molecular pathways of CID.


Assuntos
Comportamento Animal , Depressão/tratamento farmacológico , Depressão/etiologia , Ácido Glutâmico/metabolismo , Neoplasias/complicações , Neoplasias/metabolismo , Sulfassalazina/uso terapêutico , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral , Cistina/metabolismo , Citocinas/biossíntese , Depressão/sangue , Feminino , Ácido Glutâmico/sangue , Camundongos Endogâmicos BALB C , Neoplasias/sangue , Análise de Regressão , Sulfassalazina/farmacologia
9.
PLoS One ; 11(8): e0161202, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27513743

RESUMO

Pharmacologically targeting activated STAT3 and/or STAT5 has been an active area of cancer research. The cystine/glutamate antiporter, system xc-, contributes to redox balance and export of intracellularly produced glutamate in response to up-regulated glutaminolysis in cancer cells. We have previously shown that blocking STAT3/5 using the small molecule inhibitor, SH-4-54, which targets the SH2 domains of both proteins, increases xCT expression, thereby increasing system xc- activity in human breast cancer cells. The current investigation demonstrates that chronic SH-4-54 administration, followed by clonal selection of treatment-resistant MDA-MB-231 and T47D breast cancer cells, elicits distinct subtype-dependent effects. xCT mRNA and protein levels, glutamate release, and cystine uptake are decreased relative to untreated passage-matched controls in triple-negative MDA-MB-231 cells, with the inverse occurring in estrogen-responsive T47D cells. This "ying-yang" effect is linked with a shifted balance between the phosphorylation status of STAT3 and STAT5, intracellular ROS levels, and STAT5 SUMOylation/de-SUMOylation. STAT5 emerged as a definitive negative regulator of xCT at the transcriptional level, while STAT3 activation is coupled with increased system xc- activity. We propose that careful classification of a patient's breast cancer subtype is central to effectively targeting STAT3/5 as a therapeutic means of treating breast cancer, particularly given that xCT is emerging as an important biomarker of aggressive cancers.


Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Animais , Apoptose , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Técnicas Imunoenzimáticas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oxirredução , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT5/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Sumoilação , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Biomolecules ; 5(4): 3112-41, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26569330

RESUMO

As the major excitatory neurotransmitter in the mammalian central nervous system, glutamate plays a key role in many central pathologies, including gliomas, psychiatric, neurodevelopmental, and neurodegenerative disorders. Post-mortem and serological studies have implicated glutamatergic dysregulation in these pathologies, and pharmacological modulation of glutamate receptors and transporters has provided further validation for the involvement of glutamate. Furthermore, efforts from genetic, in vitro, and animal studies are actively elucidating the specific glutamatergic mechanisms that contribute to the aetiology of central pathologies. However, details regarding specific mechanisms remain sparse and progress in effectively modulating glutamate to alleviate symptoms or inhibit disease states has been relatively slow. In this report, we review what is currently known about glutamate signalling in central pathologies. We also discuss glutamate's mediating role in comorbidities, specifically cancer-induced bone pain and depression.


Assuntos
Doenças do Sistema Nervoso Central/metabolismo , Ácido Glutâmico/metabolismo , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Homeostase , Humanos , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo
11.
Behav Brain Res ; 294: 25-35, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26222786

RESUMO

Depression is commonly comorbid in cancer patients and has detrimental effects on disease progression. Evidence suggests that biological mechanisms may induce the onset of cancer-induced depression (CID). The present investigation aims to establish a validated preclinical animal model of CID. Female BALB/c mice were allocated to four groups: control (n=12), chronic oral exposure to corticosterone (CORT) (n=12), CORT exposure followed by chronic low dose fluoxetine (FLX) treatment (n=12), and subcutaneous inoculation of 4T1 mammary carcinoma cells (n=13). Anhedonia was evaluated using the sucrose preference test (SPT), and behavioural despair was evaluated using the forced swim test (FST) and tail suspension test (TST). Sholl analyses were used to examine the dendritic morphology of Golgi-Cox impregnated neurons from the medial prefrontal cortex (mPFC). CORT exposure and tumor burden were both associated with decreased sucrose preference, increased FST immobility, and decreased basilar and apical dendritic branching of neurons in the mPFC. CORT-induced behavioural and dendritic morphological changes were reversible by FLX. No differences in TST immobility were observed between groups. On the secondary TST outcome measure, CORT exposure and tumor burden were associated with a trend towards decreased power of movement. CORT exposure induced a positive control model of a depressive-like state, with FLX treatment confirming the predictive validity of the model. This verified the sensitivity of behavioural and histological tests, which were used to assess the CID model. The induction of a depressive-like state in this model represents the first successfully validated animal model of CID.


Assuntos
Dendritos/patologia , Transtorno Depressivo/patologia , Transtorno Depressivo/fisiopatologia , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/fisiopatologia , Córtex Pré-Frontal/patologia , Anedonia/efeitos dos fármacos , Anedonia/fisiologia , Animais , Antidepressivos de Segunda Geração/farmacologia , Linhagem Celular Tumoral , Corticosterona , Dendritos/fisiologia , Transtorno Depressivo/tratamento farmacológico , Sacarose na Dieta , Feminino , Fluoxetina/farmacologia , Neoplasias Mamárias Experimentais/psicologia , Camundongos Endogâmicos BALB C , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Transplante de Neoplasias , Córtex Pré-Frontal/fisiopatologia , Distribuição Aleatória
12.
Curr Pain Headache Rep ; 18(1): 384, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24293110

RESUMO

Cancer pain is a well-documented and prevalent healthcare problem, with current treatment strategies often failing to achieve acceptable efficacy. One of the major difficulties in treating cancer pain owes to the complex interplay between the cancer microenvironment, cancer therapy, and the body's own responses to these biochemical changes. A better understanding of the molecular pathways of nociception that are activated during cancer progression and treatment is necessary for better pain management and increased quality of life. This article reviews the current research that implicates oxidative stress as an important target for attenuating cancer pain. Sources of oxidative stress are first established, followed by a discussion of the various pathways that are affected by oxidative stress and that ultimately cause cancer pain.


Assuntos
Antineoplásicos/efeitos adversos , Antioxidantes/uso terapêutico , Ácido Glutâmico/metabolismo , Neoplasias/complicações , Dor Nociceptiva/etiologia , Estresse Oxidativo , Antineoplásicos/administração & dosagem , Progressão da Doença , Feminino , Humanos , Masculino , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Dor Nociceptiva/tratamento farmacológico , Dor Nociceptiva/metabolismo , Manejo da Dor , Qualidade de Vida
13.
Artigo em Inglês | MEDLINE | ID: mdl-22454806

RESUMO

OBJECTIVE: The weight impact produced by the atypical antipsychotic olanzapine has been explored in meta-analyses focusing on patients with schizophrenia. However, outcomes identified for schizophrenia patients cannot always be generalized to patients with bipolar disorder. This study aims to quantitatively estimate the impact of olanzapine on the weight of patients with bipolar disorder. DATA SOURCES: EMBASE, Medline, and PsycINFO were searched using the keywords olanzapine AND (bipolar OR acute mania) in conjunction with (weight gain OR weight increase) (last search: October 2010, with no restrictions on dates of publication). English language was used as a restriction. STUDY SELECTION: The search identified 110 articles for review. The inclusion criteria for the chosen studies were a diagnosis of bipolar disorder, the presence of an olanzapine monotherapy group, a comparator placebo or monotherapy group, and mean weight gain and/or incidences of weight gain data. This process identified 13 studies for inclusion. DATA EXTRACTION: The primary outcome measure was the mean weight change between olanzapine monotherapy and comparator monotherapy, reported in kilograms. Standard deviation was extracted directly from studies when possible and imputed for 3 studies. The secondary outcome measure was the reported incidences of ≥ 7% weight gain. DATA SYNTHESIS: The mean difference in weight gain was calculated for the continuous data of the primary outcome. Olanzapine monotherapy was associated with more weight gain when compared to placebo (mean difference = 2.10 kg; 95% CI, 1.16-3.05; P < .001) and other bipolar monotherapy (mean difference = 1.34 kg; 95% CI, 0.95-1.72; P < .001). Odds ratio analysis of the dichotomous secondary outcome also showed more weight gain with olanzapine monotherapy compared to placebo (odds ratio [OR] = 10.12; 95% CI, 1.93-53.14; P = .006) and other bipolar monotherapy (OR = 2.09; 95% CI, 1.27-3.44; P = .004). CONCLUSIONS: Currently available data suggest that olanzapine is associated with significant weight gain in bipolar patients. Issues related to side effect profiles and their impact on treatment compliance and physical health outcomes need to be considered when selecting pharmacotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...